Prediction of Radiation Sensitivity Using a Gene Expression Classifier
نویسندگان
چکیده
منابع مشابه
Prediction of radiation sensitivity using a gene expression classifier.
The development of a successful radiation sensitivity predictive assay has been a major goal of radiation biology for several decades. We have developed a radiation classifier that predicts the inherent radiosensitivity of tumor cell lines as measured by survival fraction at 2 Gy (SF2), based on gene expression profiles obtained from the literature. Our classifier correctly predicts the SF2 val...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملClassifier Conditions Using Gene Expression Programming
The classifier system XCSF was modified to use gene expression programming for the evolution and functioning of the classifier conditions. The aim was to fit environmental regularities better than is typically possible with conventional rectilinear conditions. An initial experiment approximating a nonlinear oblique environment showed excellent fit to the regularities.
متن کاملPrediction of Acid Mine Drainage Generation Potential of A Copper Mine Tailings Using Gene Expression Programming-A Case Study
This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been suggested by applying the gene expression programming (GEP) a...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Research
سال: 2005
ISSN: 0008-5472,1538-7445
DOI: 10.1158/0008-5472.can-05-0656